Compressive SAR Imaging with Joint Sparsity and Local Similarity Exploitation
نویسندگان
چکیده
Compressive sensing-based synthetic aperture radar (SAR) imaging has shown its superior capability in high-resolution image formation. However, most of those works focus on the scenes that can be sparsely represented in fixed spaces. When dealing with complicated scenes, these fixed spaces lack adaptivity in characterizing varied image contents. To solve this problem, a new compressive sensing-based radar imaging approach with adaptive sparse representation is proposed. Specifically, an autoregressive model is introduced to adaptively exploit the structural sparsity of an image. In addition, similarity among pixels is integrated into the autoregressive model to further promote the capability and thus an adaptive sparse representation facilitated by a weighted autoregressive model is derived. Since the weighted autoregressive model is inherently determined by the unknown image, we propose a joint optimization scheme by iterative SAR imaging and updating of the weighted autoregressive model to solve this problem. Eventually, experimental results demonstrated the validity and generality of the proposed approach.
منابع مشابه
Reconstruction , autofocusing , moving targets , and compressed sensing ] Sparsity - Driven Synthetic Aperture Radar Imaging
Date of publication: 13 June 2014 T his article presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews 1) the analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results, 2) sparsity-based methods for wide-angle SAR imaging and anisotropy characteriz...
متن کاملSparsity-Driven Synthetic Aperture Radar Imaging
This paper presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews (i) analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results; (ii) sparsity-based methods for wide-angle SAR imaging and anisotropy characterization; (iii) sparsity-based methods fo...
متن کاملMultibaseline polarimetric synthetic aperture radar tomography of forested areas using wavelet-based distribution compressive sensing
The three-dimensional (3-D) structure of forests, especially the vertical structure, is an important parameter of forest ecosystem modeling for monitoring ecological change. Synthetic aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation along elevation coordinates. Due to the advantages of super-resolution imaging and a small number of measurements, distribut...
متن کاملSAR moving object imaging using sparsity imposing priors
Synthetic aperture radar (SAR) returns from a scene with motion can be viewed as data from a stationary scene, but with phase errors due to motion. Based on this perspective, we formulate the problem of SAR imaging of motion-containing scenes as one of joint imaging and phase error compensation. The proposed method is based on the minimization of a cost function which involves sparsity-imposing...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کامل